Naval Research Laboratory

Washington, DC 20375-5320

NRL/MR/6040--11-9357

TURBID: A Routine for Generating
Random Turbulent Inflow Data

LEE PHILLIPS
Davip FYFe

Laboratory for Propulsion, Energetic, and Dynamic Systems
Laboratories for Computational Physics and Fluid Dynamics

November 9, 2011

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE o ApDroYe

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
09-11-2011 Memorandum Report

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
TURBID: A Routine for Generating Random Turbulent Inflow Data 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Lee Phillips* and David Fyfe Se. TASK NUMBER
5f. WORK UNIT NUMBER
64-4492-0-1
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Naval Research Laboratory (Code 6042)
4555 Overlook Avenue, SW NRL/MR/6040--11-9357
Washington, DC 20375-5344

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR / MONITOR’S ACRONYM(S)

11. SPONSOR / MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
*Work performed at NRL, currently employed at Alogus Research Corporation, 1434 Waggaman Circle, McLean, VA 22101.

14. ABSTRACT

We report on a Fortran module for the generation of turbulent inflow and initial data for use in fluid simulation codes. We explain the uses and
limitations of the module and how to incorporate it into an existing code. The data created by the module is examined, and the code is tested for
parallel performance on shared memory, multi-processor computers; a complete listing is included.

15. SUBJECT TERMS
Turbulence Fluid simulation

OpenMP Turbulent boundary conditions
16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES David Fyfe
a. REPORT b. ABSTRACT c. THIS PAGE Unclassified 21 209(?9.)TELEPHONE NUMBER (include area
Unclassified Unclassified Unclassified Unlimited (202) 767-5863

Standard Form 298 (Rev. 8-98)
i Prescribed by ANSI Std. 239.18

This page intentionally left blank.

TURBID: A Routine for Generating Random
Turbulent Inflow Data

1 Introduction

Simulations of turbulent or fluctuating fluid flows require, in the case of simulation
domains with closed boundaries, initial conditions to be defined throughout the
fluid volume, and, in the case of simulation domains with one or more inflow
boundaries, the fluid to be fully specified at the inlet. These initial and inflow
boundary conditions are in addition to the boundary conditions (rigid wall, free-
slip surface, compliant membrane, etc.) that must be specified on the remaining
boundaries of the domain for a correctly posed mathematical problem.

In any system of partial differential equations, either their analytical solution
or a numerical approximation to it depends critically upon the boundary and ini-
tial conditions. In the case of time-dependent, evolving, turbulent flows with an
inflow boundary, which will be the subject of this report, the gross features of
the evolving flow field strongly depend on the details of the inflow. In fact, even
the large-scale mean features, their time evolution, and the character of the even-
tual statistically steady state, if one is attained, depend on the detailed statistical
character of the fluid at the inflow boundary.

Manuscript approved October 24, 2011.

An example of this possibly counterintuitive result was given by Klein et al.
in 2002. [1] These authors display solutions of a plane, turbulent jet problem for
three different types of inflow conditions: a specified mean flow with no fluctu-
ations, the mean flow with added random, uniformly distributed (in wavenumber
space) fluctuations, as might be calculated by simply adding the scaled output
of a random number generator to an appropriate mean flow profile, and a more
physically realistic inflow taken as the output of a separate direct numerical simu-
lation of turbulent flow in a channel. The interesting result was that, after a short
transient interval, the first two cases become identical; the inflow field containing
uniform, random fluctuations led to the same result as the inflow consisting of a
perfectly laminar mean field with no fluctuations. Distinct from these solutions
is what is presumably the “correct” one, resulting from a more realistic inflow
condition.

The reason [1] the uniform inflow and the inflow with uniformly random fluc-
tuations lead to nearly identical, and incorrect, results is that the energy distribu-
tion in the fluctuations of the latter field are not physically realistic for the problem
at hand (or for any problem involving real fluid turbulence). The uniform distri-
bution puts too much energy at high wavenumbers, which are quickly damped in
the solution and lead to a result insensibly different from the purely laminar case.
The uniform distribution of fluctuations contains no information about the length
scales relevant to the problem, and is not sufficiently physically realistic.

In principal, one could solve the problem of generating physically realistic
inflow conditions by evolving an initially laminar flow in the domain desired, by
direct numerical simulation, through its transition to turbulence, and using the
result as a boundary condition. However, this would likely be a bigger project,
and consume more computational resources, than the main problem supposedly
under consideration, and is not normally considered practical.

The problem of generating a sufficiently realistic inflow field using a method
that is efficient enough for inline use in simulation codes has been attacked from
several angles, and several good solutions have appeared in the literature. We
report here on the implementation of one of these solutions in a general-purpose
routine in the form of a FORTRAN module, TURBID, that can easily be compiled
into any fluid simulation code. We examine the output of the module, give exam-
ples of its use in the generation of inflow and/or initial volume data, and test its
scalability under shared-memory parallelism.

2 The code

The Appendix contains a complete listing of the source, with comments retained.
The language is FORTRAN90 with openMP [2] directives (discussed below). Al-
though the code is designed to be general-purpose and should be easily plugged in
to any existing code, certain considerations relating to current projects which are
likely to make use of TURBID led to several design decisions. The code is written
as a FORTRAN module and uses no common blocks. Certain arrays are allocated
but not released, as the routine will usually be called repeatedly, and can reuse the
associated memory. If the code is used only to initialize a volume and will not
be called again during the run, the user may wish to modify it to deallocate the
arrays.

TURBID is a straightforward implementation of the procedure and algorithm
described by Klein (2002). [1] It produces random but spatially correlated veloc-
ity fields, with a Gaussian correlation function. The technique uses a digital filter
and remains in physical space throughout, and is inherently fairly efficient. The
dominant length scales, which can be different in each coordinate direction, are set
as parameters 1sx, 1lsy, lsz in terms of the grid spacing. The user will assign
physical dimensions to the grid cells and timestep as appropriate to the problem.

The Gaussian nature of the correlations is physically faithful to the nature of
three-dimensional homogeneous turbulence in its most elementary form. The re-
sults [1] calculated using such inflow data show that it retains enough physical
reality to lead to correct solutions in a variety of turbulence problems. In contrast,
more naively constructed random inflow data, such as that incorporating uniform,
random fluctuations, leads to incorrect results. [1] In short, the fields calculated by
this routine probably contain the minimum essential physical ingredients to lead
to realistic simulation results that can be expected to agree with experiments, pro-
vided that strong departures from Gaussian statistics are not a prominent feature
of the problem under investigation. Such non-Gaussian statistics may occur in
strongly intermittent [3] or two-dimensional turbulence [4]. In such cases some-
what more elaborate methods [5] for generating synthetic fluctuations may be
required.

The main function in the module, turin, returns the velocity field to the call-
ing program. The geometry is Cartesian (x,y,x), with x in the direction of the
mean flow, and the inflow boundary in the (x —y) plane. The velocity field is
stored as a structure with components velx, vely, and velz, defined at the begin-
ning of the module. turin calls vfromr, which calculates the velocities from uni-
form random number fields, which are returned form the standard random number

generator. viromr in turn uses the function filco, which calculates the filter co-
efficients. The correlation function is defined in ffunc; the user can replace the
Gaussian here by any desired correlation function without needing to change any-
thing else in the code; in this way other distribution functions, such as Gaussians
with long tails that are associated with intermittent turbulence, can be tried.

After the module is supplied a main program; its chief purpose is to illustrate
the use of the module, especially the required declarations, and to call it to gener-
ate test output and timings. The main program would normally be deleted before
the code is used in production. The user will normally scale the field of fluctu-
ations returned by turin to reflect the desired turbulence intensity, and add the
fluctuations to a particular mean flow profile.

The user of the routine has several parameters to set to control operation of the
code. All of these are passed as arguments to the call to turin, which is normally
the only external interface intended to be used. The first two arguments to turin
are the dimensions of the grid perpendicular to the mean flow; the routine does
not need to know about the streamwise extent of the computational box. After
that comes iseed, for initializing the random number generator. Repeating the
run with the same iseed will yield the same results. The next three arguments,
1sx, lsy, and 1lsz are the scale lengths in units of the grid cell size. There are
three because it is possible to have different scale lengths in each direction. The
filter widths, nfx, nfy, and nfz, can normally be set to twice the scale lengths,
as is done in the example main program. The final argument is a boolean flag
that tells the routine whether to initialize a new inflow plane or to calculate a
new inflow plane that is correlated in the x (or temporal) direction with the one
calculated in the previous call. A study of the supplied main program should make
clear how this parameter is used.

3 Results

The main program produces four output files. The x,y, and z components of ve-
locity on the entire grid are stored in fort.9, fort.10, and fort.11, respec-
tively; the data is appended to these files for each iteration. Another file, tseries,
records all components of the velocity field at one specified grid location for each
iteration. It can be used to examine the single-point spectra of the output, for
example, considered as a time series.

The grid data can be plotted with a routine like the following python program:

from numpy import x*
from pylab import *
interactive(False)
ny = nz = 100
vx = loadtxt(’fort.9’)
for f in range(len(vx)/nz):
pcolormesh(arange(ny), arange(nz), vx[f*nz:f*nz+nz-1, :],
shading="flat")
savefig(’vxplot¥%i.png’ % £f)
vy = loadtxt(’fort.10’)
for f in range(len(vx)/nz):
pcolormesh(arange(ny), arange(nz), vy[f*nz:f*nz+nz-1, :],
shading="flat")
savefig(’vyplot%hi.png’ % f)
vz = loadtxt(’fort.11’)
for f in range(len(vx)/nz):
pcolormesh(arange(ny), arange(nz), vz[f*nz:f*nz+nz-1, :],
shading="flat")
savefig(’vzplot¥%i.png’ % £f)

This code saves an image of each velocity component for each iteration. The
images can be assembled into a movie, which provides a view of the data as a
time-varying inflow boundary. An example of such as movie can be seen at
http://lcp.nrl.navy.mil/\~1phillip/ct/turbulentInflow.mov,
which was calculated using a length scale of 1sx = 6.

Another view of the same data could be provided by assembling the frames
into a volume by stacking them at equal intervals along the x axis. This would
represent the simulation volume initialized with random data. The main program
contains a commented-out loop introduced with a comment that shows how to
use the module to fill arrays holding the velocity components in case the entire
simulation volume needs to be initialized with a turbulent field. The module can
be used for such initialization alone, to generate inflow turbulence only, or for
both.

Figure 1 shows an x — y plane for one velocity component for three values of
the length scale. The velocities range from -1 to 1 (red to blue); the user must
scale the fluctuations to represent the desired level of turbulence in the simulation.
The first frame shows the result when the length scale is set to one grid cell, which

Figure 1: One component of the turbulence field for three values of the length
scale 1sx. The data plotted ranges from -1 to 1; frame (a) is equivalent to uni-
formly random, uncorrelated data.

is equivalent to uniformly random, uncorrelated data.

It should be noted here that the calculated fluctuations contain no real physics.
The routine does not know the equations of motion or anything about real flows,
except for the correlation function defined in ffunc and the length scales passed
in to the routine by the user. It simply returns a set of random numbers filtered in
such a way that they are correlated according to the correlation function over the
specified length scales. We typically use a Gaussian correlation function because
that agrees with measurements of fluid turbulence in some class of experiments
and with some models of turbulent fluctuations. But the fluctuations returned by
the routine should not be expected to agree with, for example, the Kolmogorov
spectrum, which arises from physical processes that are unknown to the routine.

In a sense this is desirable, as it allows the generated boundary conditions to be
used in a variety of situations where there are minimum assumptions made about
the physics or the nature of the medium. The distribution of fluctuations calcu-
lated is “statistically correct” in the sense that it leads to correct results when used
as an inflow condition in a simulation code. [1] The correct turbulent spectrum
will be developed downstream of the inflow by the fluid code, which will con-
tain the actual physics of dissipative and nonlinear processes. The fluctuations
calculated by this routine also do not satisfy the incompressibility condition, and
so may equally be used in compressible and incompressible solvers. In the case
of an incompressible flow problem, the fluctuations will add an error in the form
of a small (when compared with the incompressible mean flow) nonzero V - v
term. In a compressible simulation at low Mach number this may create a small
perturbation in the form of low-amplitude sound waves that will propagate away.
In the case of an incompressible simulation, the error can be removed as part of
the normal solution procedure by using projection methods [6] or other means; in
any case the V - v error is not more than 1% of the streamwise velocity in typical
cases. [7]

One check that the results reflect the desired statistical correlations and are
therefore, at least to that degree, correct, can be made by calculating the two-point
autocorrelation, €' (t) = [v(x)v(x + 7)dx of the output fluctuations. This was
done by taking one example 100 x 100 (y,z) plane from the code output with all
length scales set to 12, and extracting several lineouts, calculating the 1-d € for
each lineout. The results are plotted as solid lines in Figure 2, along with Gaussian
curves reflecting the same length scale, e~ ((x=30)/ 12)2), as dotted lines.

In interpreting the figure one should not pay too much attention to the areas
near the boundaries at 0 and 100, as the results there are polluted by the usual
edge effects that occur when numerically estimating autocorrelations. We can
see that, although the results vary statistically depending on exactly where the
lineout is taken, all the autocorrelation curves reflect fairly accurately the desired
Gaussian structure, and they have the correct scale length. Each Gaussian curve in
the plot was normalized to have the same central amplitude as an autocorrelation
curve to facilitate comparison. The results are a good indication of the correctness
of the code, especially considering the noisiness of the statistics and numerical
estimation of the correlation that can be expected on the small grid.

Figure 2: Autocorrelation of turbulent fluctuation field (solid lines) compared with
Gaussians at the target scale length (dotted lines).

Figure 3: The runtime vs number of processors, showing nearly perfect parallel
scaling.

4 Runtimes

Figure 3 shows the time in seconds per complete iteration per gridcell as a function
of N, where N is the number of threads, or processors, used. The runs were
performed on a machine with eight processors each sharing main memory, so N
runs from 1 to 8. The values plotted are each an average of five runs on a 100 x 100
grid, with each run consisting of 100 iterations of the routine. The scale lengths
were all set to 6 and the filter widths were set to their normal values of twice the
scale lengths.

The values are plotted on a log-log scale and compared with the ideal 1/N
scaling. It is clear that there is nearly perfect parallel scaling. This parallel scal-
ing arises entirely from several openMP [2] directives, which implement shared-
memory parallelism. An examination of the source code shows that we have only

applied the openMP directives to one set of loops in the vfromr function. Vari-
ous other parts of the code were subjected to parallelization experiments, but this
did not lead to any further speedup. In particular, use of OMP WORKSHARE [8] di-
rectives applied to various array-syntax statements found in the code worsened
performance on the machine used for testing. We verified that the output from the
routine was not affected by the number of processors used.

Further work in increasing the parallel efficiency of the program might involve
rewriting some of the array-syntax statements as explicit loops which may be
more amenable to openMP optimizations and, for incorporation in codes using
distributed memory architectures, organizing the code along MPI-type lines.

Appendix: TURBID source listing

The code is FORTRAN90 using fixed line format, and contains openMP direc-
tives as well as conditionally compiled timing statements. It is available online at
http://lcp.nrl.navy.mil/ 1phillip/ct/turbid.F. If the file is saved with
the extension .F, then it can be compiled using ifort with the command ifort
—openmp turbid.F. This will create a module that can be used in another code
by following the example given in the main program, which is the last routine in
the listing.

In order to run timing tests, add the argument -Dtiming to the compilation
command. This turns off all writing to files except for the timing result, which is
written to the file timing after the timing results are collected.

module inflow

type :: velvec
real :: velx
real :: vely
real :: velz
end type

real, allocatable :: bijk(:,:,:)

! This module allocates several arrays and does not deallocate
! them. It is intended to be called frequently and reuses the

I arrays. If you call the routines here only at startup you may
I want to deallocate storage.

contains

10

function turin(ny, nz, iseed, lsx, lsy, lsz,
nfx, nfy, nfz, startup)
I If startup then initialize full random number fields:
| we are starting a new problem; if not startup then
I shift random fields and calculate temporally and
I spatially correlated data.
I 1sx and 1lsy are the length scales as multiples
! of gridcells.
I The filter widths nfx, nfy, and nfz should be at least
I twice the length scales. Normally nfy = nfz.
logical startup
integer 1lsx, 1lsy, 1lsz, ny, nz
integer nfx, nfy, nfz ! filter widths
I The random fields:

real, dimension(-nfy+1 : ny+nfy, -nfz+l : nz + nfz) :: rfill
real, allocatable, save :: rx(:, :, :), ry(:, :,),

rz(:, :,)
I The vector velocity, for easy return from this function:
type(velvec), dimension(ny,nz) :: velvecs, turin

integer iseed
integer k,j,ip,jp
I x is the mean flow direction; y is ’vertical’; z is
| crosswise
if (startup) then
allocate(rx(-nfx : nfx, -nfy+1 : ny+nfy, -nfz+l
nz + nfz))
allocate(ry(-nfx : nfx, -nfy+1 : ny+nfy, -nfz+l
nz + nfz))
allocate(rz(-nfx : nfx, -nfy+l : ny+nfy, -nfz+l
nz + nfz))
call random_seed(iseed)
call random_number (rx)
call random_number (ry)
call random_number (rz)
rx = 2. *x rx - 1.

ry = 2. xry - 1.
rz = 2. xrz - 1.
else

11

I Shift random fields:
call random_number (rfill)
rfill = 2. * rfill - 1.
rx = eoshift(rx, 1, rfill, 1)
call random_number (rfill)
rfill = 2. * rfill - 1.
ry = eoshift(ry, 1, rfill, 1)
call random_number (rfill)
rfill = 2. * rfill - 1.
rz = eoshift(rz, 1, rfill, 1)
end if
velvecs = vfromr(rx, ry, rz, nfx, nfy, nfz, ny, nz, lsx,
+ lsy, lsz)
turin = velvecs
end function turin
function vfromr(rx, ry, rz, nfx, nfy, nfz, ny, nz, lsx, lsy,

+ 1sz)
type(velvec), dimension(ny,nz) :: velvecs, vfromr
real, dimension(-nfx : nfx, -nfy+1 : ny+nfy, -nfz+l :
+ nz + nfz) :: rx, ry, rz

integer 1lsx, 1lsy, 1lsz, ny, nz, nfx, nfy, nfz
integer k,j,ip,jp
if (.not. allocated(bijk)) then
allocate(bijk(-nfx:nfx, -nfy:nfy, -nfz:nfz))

endif
bijk = filco(lsx, lsy, lsz, nfy, nfz)
velvecslvelx = 0.
velvecsyvely = 0.
velvecsyvelz = 0.

'\$OMP PARALLEL private(k, j, kp, jp, ip)

'\$OMP DO
do k=1, nz
do j =1, ny
do kp = -nfz, nfz
do jp = —nfy, nfy
do ip = —nfx, nfx
velvecs(j,k)%velx = velvecs(j,k)%velx +
+ bijk(ip,jp,kp) * rx(ip, j+jp, k+kp)

12

enddo
enddo
enddo
enddo
enddo
'\$OMP END DO
I\$OMP DO
do k = 1, nz !Nasty repeated code; but too much abstraction
do j =1, ny ! here would make this hard to follow.
do kp = —nfz, nfz
do jp = —nfy, nfy

do ip = -nfx, nfx
velvecs(j,k)%vely = velvecs(j,k)%vely +
+ bijk(ip, jp,kp) * ry(ip, j+jp, k+kp)
enddo
enddo
enddo
enddo
enddo
'\$0MP END DO
'\$OMP DO
do k=1, nz
do j =1, ny
do kp = -nfz, nfz
do jp = —nfy, nfy
do ip = —nfx, nfx
velvecs(j,k)%velz = velvecs(j,k)%velz +
+ bijk(ip,jp,kp) * rz(ip, j+jp, k+kp)
enddo
enddo
enddo
enddo

enddo
'\$OMP END DO
'\$OMP END PARALLEL
viromr = velvecs
end function vfromr
function ffunc(k, n)

13

I The actual filtering function. Notice that it’s a
I Gaussian.
real ffunc
real pi
integer k, n
parameter (pi = 3.1415926)
ffunc = exp(-(pixk**2 / (2.*%n*%x2)))
end function ffunc
function filco(lsx, lsy, lsz, nfy, nfz)
IReturns the array of filter coefficients.
I 1sx, etc. are the length scales;
I nfy, etc. are the filter widths.
integer 1lsx, 1lsy
integer nfx, nfy, nfz

real s
real, allocatable :: filco(:,:,:), bx(:), by(:), bz(:)
nfx = nfz

allocate(filco(-nfx:nfx, -nfy:nfy, -nfz:nfz))
IThe 1d coefficients that are multiplied together to form
Ithe filco array:
allocate(bx(-nfx:nfx), by(-nfy:nfy), bz(-nfz:nfz))
s = 0.
do k = —nfx, nfx
s = s + ffunc(k, 1sx)
enddo
s = sqrt(s)
do k = —nfx, nfx
bx(k) = ffunc(k, 1lsx) / s
enddo
s = 0.
do k = -nfy, nfy
s = s + ffunc(k, 1lsy)
enddo
s = sqrt(s)
do k = -nfy, nfy
by(k) = ffunc(k, 1lsy) / s
enddo
s = 0.

14

do k = -nfz, nfz

s = s + ffunc(k, 1sz)
enddo
s = sqrt(s)
do k = —nfz, nfz

bz(k) = ffunc(k, 1lsz) / s
enddo
do k = -nfz, nfz

do j = -nfy, nfy

do i = —nfx, nfx
filco(i,j,k) = bx(i)*by(j)*bz(k)
enddo
enddo
enddo

deallocate(bx, by, bz)
end function filco
end module inflow
program main
use inflow
integer iseed
data iseed/10023459/
integer ii
integer nx, ny, nz ! Grid size
parameter (nx = 100, ny = 100, nz = 100)
I Vector velocity at the inflow plane:

type(velvec), dimension(ny,nz) :: velvecs
! type(velvec), dimension(nx,ny,nz) :: v
real, dimension(nx, ny, nz) :: vx, Vy, Vz

integer lsx, 1lsy, lsz ! length scales as multiples of cell
parameter (lsx = 12, 1lsy = 12, 1lsz = 12)
integer nfx, nfy, nfz ! filter widths
parameter (nfy = 2 * lsy, nfz = 2 * 1sz, nfx = nfz)
character (len=40) vformat
character (len = 30) cnx
integer iters
parameter (iters = 1)
#ifdef timing
integer :: timel, time0O, tdelta

15

real :: ttime
open(Unit = 90, file="timing", form = "formatted", status =
+ "new")
#endif
write(cnx, *) nx
vformat = *(° // cnx // ’(gl2.3))’
I Initialize the inflow plane:
velvecs = turin(ny, nz, iseed, 1lsx, lsy, lsz,
+ nfx, nfy, nfz, .true.)
! This is how to fill the volume with velocity fluctuations:

c do ii = 1, nx
C velvecs = turin(ny, nz, iseed, lsx, lsy, lsz,
c + nfx, nfy, nfz, .false.)
c vx(ii, :, :) = velvecslvelx
c vy(ii, :, :) = velvecslvely
c vz(ii, :, :) = velvecslvelz
C enddo
open(Unit = 80, file="tseries", form = "formatted", status =
+ "new")

write(80, *) O ! Header
#ifdef timing
CALL SYSTEM_CLOCK(COUNT_RATE=tdelta)
CALL SYSTEM_CLOCK(COUNT=timeO)
#endif
do ii = 1, iters ! Get a series of correlated inflow plane
I Write out "time series" at a particular location:
#ifndef timing
write(80, *) ii, velvecs(1,1)%velx,velvecs(1l,1)%vely,
+ velvecs(1,1)%velz
write(9, vformat) velvecsYvelx | fluctuations
write(10, vformat) velvecs/vely
write(11l, vformat) velvecsYvelz
#endif
velvecs = turin(ny, nz, iseed, 1lsx, lsy, lsz,
+ nfx, nfy, nfz, .false.)
enddo
#ifdef timing
CALL SYSTEM_CLOCK(COUNT=timel)

16

ttime = real((timel-timeO)/tdelta)
write(90,%) ttime/(iters * nz * ny)
#endif
end

Acknowledgments

This work was supported by the U.S. Naval Research Laboratory. We thank Gopal
Patnaik for advice and support.

References

[1] M. Klein, A. Sadiki, and J. Janicka. A digital filter based generation of inflow
data for spatially developing direct numerical or large eddy simulations. J.
Comp. Phys, 186, 2002.

[2] Openmp.org. http://openmp.org/wp/.

[3] Francois N. Frenkiel and Philip S. Klebanoff. Statistical properties of velocity
derivatives in a turbulent field. J. Fluid Mech., 48, 1971.

[4] G. Boffetta, A. Celani, and M. Vergassola. Inverse energy cascade in two-
dimensional turbulence: Deviations from gaussian behavior. Phys. Rev. E, 61,
January 2000.

[5] L. di Mare et al. Synthetic turbulence inflow conditions for large-eddy simu-
lation. Phys. Fluids, 18, February 2006.

[6] John B. Bell, Phillip Colella, and Harland M. Glaz. A second-order projection
method for the incompressible navier-stokes equations. Journal of Computa-
tional Physics, 85:257 — 283, 1989.

[7] Andreas Kempf, Markus Klein, and Johannes Janicka. Efficient generation of
initial- and inflow-conditions for transient turbulent flows in arbitrary geome-
tries. Flow, Turbulence and Combustion, 74, 2005.

17

[8] Miguel Hermanns. Parallel programming in fortran 95 using openmp. http:
//www.openmp.org/presentations/miguel/F95_0penMPv1_v2.pdf,
2002.

18

